Безопасность. Настройка. Интернет. Восстановление. Установка

Самодельный реобас для компьютера. Реобас (регулятор оборотов вентиляторов в компьютере) с сенсорным экраном

Давным давно, когда я сидел на дорогущем инете по трафику я загнался по моддингу. Визуально оформительская часть этого движения мне была глубоко по барабану, а вот тишины хотелось очень сильно. Наткнулся я на интересный девайс – реобас. Прочитал текстовое описание, с любопытством подгрузил картинки и жестоко обломался – перспектива крутить ручки, выставляя скорость вентиляторов, мне показалась совершенно бредовой. Ну в самом деле, что за фигня? Я же ленивый до безумия, либо выставлю на максимум, чтобы получить нормальное охлаждение и буду сидеть, слушая свист ветра и вой кулеров, либо забуду на минимуме и в итоге получу синий экран смерти из-за перегрева чего либо. Пришлось врубить родимый паяльник и начать изобретать систему управления кулерами.

Пропорциональное управление – залог тишины!
Какая задача ставится перед нашей системой управления? Да чтобы пропеллеры зря не вращались, чтобы зависимость скорости вращения была от температуры. Чем горячее девайс — тем быстрей вращается вентилятор. Логично? Логично! На том и порешим.
Заморачиваться с микроконтроллерами конечно можно, в чем то будет даже проще, но совершенно не обязательно. На мой взгляд проще сделать аналоговую систему управления — не надо будет заморачиваться с программированием на ассемблере.

Будет и дешевле, и проще в наладке и настройке, а главное любой при желании сможет расширить и надстроить систему по своему вкусу, добавив каналов и датчиков. Всё что от тебя потребуется это лишь несколько резисторов, одна микросхема и термодатчик. Ну а также прямые руки и некоторый навык пайки.


Состав:

  • Чип резисторы размера 1206. Ну или просто купить в магазине – средняя цена одного резистора 30 копеек. В конце концов никто не мешает тебе чуток подправить плату, чтобы на место чип резисторов впаять обычные, с ножками, а уж их в любом старом транзисторном телевизоре навалом.
  • Многооборотный переменный резистор примерно на 15кОм.
  • Также потребуется чип конденсатор размера 1206 на 470нф (0.47мкФ)
  • Любой электролитический кондер напряжением от 16 вольт и выше и емкостью в районе 10-100мкФ.
  • Винтовые клеммники по желанию – можно просто припаять провода к плате, но я поставил клеммник, чисто по эстетическим соображениям – девайс должен выглядеть солидно.
  • В качестве силового элемента, который и будет управлять питанием кулера, мы возьмем мощный MOSFET транзистор. Например IRF630 или IRF530 его иногда можно выдрать из старых блоков питания от компа. Конечно для крохотного пропеллера его мощность избыточна, но мало ли, вдруг ты захочешь туда что-нибудь помощней всунуть?
  • Температуру будем щупать прецезионным датчиком LM335Z он стоит не более десяти рублей и дефицита из себя не представляет, да и заменить его при случае можно каким-нибудь терморезистором, благо он тоже не является редкостью.
  • Основной деталью, на которой основано все, является микросхема представляющая из себя четыре операционных усилителя в одном корпусе – LM324N очень популярная штука. Имеет кучу аналогов (LM124N, LM224N, 1401УД2А) главное убедись, чтобы она была в DIP корпусе (такой длинный, с четырнадцатью ножками, как на рисунках).

Замечательный режим – ШИМ

Чтобы вентилятор вращался медленней достаточно снизить его напряжение. В простейших реобасах это делается посредством переменного резистора, который ставят последовательно с двигателем. В итоге, часть напряжения упадет на резисторе, а на двигатель попадет меньше как результат – снижение оборотов. Где падляна, не замечаешь? Да засада в том, что энергия выделившаяся на резисторе преобразуется не во что нибудь, а в обычное тепло. Тебе нужен обогреватель внутри компа? Явно нет! Поэтому мы пойдем более хитрым способом – применим широтно-импульсную модуляцию aka ШИМ или PWM . Страшно звучит, но не бойся, тут все просто. Представь, что двигатель это массивная телега. Ты можешь толкать его ногой непрерывно, что равносильно прямому включению. А можешь двигать пинками – это и будет ШИМ . Чем длинней по времени толчок ногой тем сильней ты разгоняешь телегу.

При ШИМ питании на двигатель идет не постоянное напряжение, а прямоугольные импульсы, словно ты включаешь и выключаешь питание, только быстро, десятки раз в секунду. Но двигатель имеет неслабую инерцию, а еще индуктивность обмоток, поэтому эти импульсы как бы суммируются между собой – интегрируются. Т.е. чем больше суммарная площадь под импульсами в единицу времени, тем большее эквивалентное напряжение идет на двигатель. Подаешь узенькие, словно иголки, импульсы – двигатель еле вращается, а если подать широкие, практически без просветов, то это равносильно прямому включению. Включать и выключать двигатель будет наш MOSFET транзистор, а формировать импульсы будет схема.

Пила + прямая = ?
Столь хитрый управляющий сигнал получается элементарно. Для этого нам надо в компаратор загнать сигнал пилообразной формы и сравнить его с каким либо постоянным напряжением. Смотри на рисунок. Допустим у нас пила идет на отрицательный выход компаратора , а постоянное напряжение на положительный. Компаратор складывает эти два сигнала, определяет какой из них больше, а потом выносит вердикт: если напряжение на отрицательном входе больше чем на положительном, то на выходе будет ноль вольт, а если положительное будет больше отрицательного, то на выходе будет напряжение питания, то есть около 12 вольт. Пила у нас идет непрерывно, она не меняет свою форму со временем, такой сигнал называется опорным.

А вот постоянное напряжение может двигаться вверх или вниз, увеличиваясь или уменьшаясь в зависимости от температуры датчика. Чем выше температура датчика, тем больше напряжение с него выходит , а значит напруга на постоянном входе становится выше и согласно этому на выходе компаратора импульсы становятся шире, заставляя вентилятор крутиться быстрее. Это будет до тех пор, пока постоянное напряжение не перекроет пилу, что вызовет включение двигателя на полные обороты. Если же температура низкая, то и напряжение на выходе датчика низкое и постоянная уйдет ниже самого нижнего зубчика пилы, что вызовет прекращение вообще каких либо импульсов и двигатель вообще остановится. Загрузил, да? ;) Ничего, мозгам полезно работать.

Температурная математика

В качестве датчика у нас используется LM335Z . По сути это термостабилитрон . Прикол стабилитрона в том, что на нем, как на ограничительном клапане, выпадает строго определенное напряжение. Ну, а у термостабилитрона это напряжение зависит от температуры. У LM335 го зависимость выглядит как 10mV * 1 градус по Kельвину . Т.е. отсчет ведется от абсолютного нуля. Ноль по Цельсию равен двести семьдесят три градуса по Кельвину. А значит, чтобы получить напряжение выходящее с датчика, скажем при плюс двадцати пяти градусах Цельсия, то нам надо к двадцати пяти прибавить двести семьдесят три и умножит полученную сумму на десять милливольт.

(25+273)*0.01 = 2,98В

При других температурах напряжение будет меняться не сильно, на те же 10 милливольт на градус . В этом заключается очередная подстава:
Напряжение с датчика меняется несильно, на какие то десятые доли вольта, а сравнивать его надо с пилой у которой высота зубьев достигает аж десяти вольт. Чтобы получить постоянную составляющую напрямую с датчика на такое напряжение нужно нагреть его до тысячи градусов — редкостная лажа. Как тогда быть?

Так как у нас температура все равно вряд ли опустится ниже двадцати пяти градусов, то все что ниже нас не интересует, а значит можно из выходного напряжения с датчика выделить лишь самую верхушку, где происходят все изменения. Как? Да просто вычесть из выходного сигнала две целых девяносто восемь сотых вольта. А оставшиеся крохи умножить на коэффициент усиления , скажем, на тридцать.

В аккурат получим порядка 10 вольт на пятидесяти градусах, и вплоть до нуля на более низких температурах. Таким образом, у нас получается своеобразное температурное “окно” от двадцати пяти до пятидесяти градусов в пределах которого работает регулятор. Ниже двадцати пяти – двигатель выключен, выше пятидесяти – включен напрямую. Ну а между этими значениями скорость вентилятора пропорциональна температуре. Ширина окна зависит от коэффициента усиления. Чем он больше, тем уже окно, т.к. предельные 10 вольт, после которых постоянная составляющая на компараторе будет выше пилы и мотор включится напрямую, наступят раньше.

Но ведь мы не используем ни микроконтроллера, ни средства компьютера, как же мы будем делать все эти вычисления? А тем же операционным усилителем. Он ведь не зря назван операционным, его изначальное назначение это математические операции. На них построены все аналоговые компьютеры — потрясающие машины, между прочим.

Чтобы вычесть одно напряжение из другого нужно подать их на разные входы операционного усилителя. Напряжение с термодатчика подаем на положительный вход , а напряжение которое надо вычесть, напряжение смещения, подаем на отрицательный . Получается вычитание одного из другого, а результат ещё и умножается на огромное число, практически на бесконечность, получился еще один компаратор.

Но нам же не нужна бесконечность, так как в этом случае наше температурное окно сужается в точку на температурной шкале и мы имеем либо стоящий, либо бешено вращающийся вентилятор, а нет ничего более раздражающего чем включающийся и выключающийся компрессор совкового холодильника. Аналог холодильника в компе нам также не нужен. Поэтому будем понижать коэффициент усиления, добавляя к нашему вычитателю обратные связи .

Суть обратной связи в том, чтобы с выхода сигнал загнать обратно на вход. Если напряжение с выхода вычитается из входного, то это отрицательная обратная связь, а если складывается, то положительная. Положительная обратная связь увеличивает коэффициент усиления, но может привести к генерации сигнала (автоматчики называют это потерей устойчивости системы). Хороший пример положительной обратной связи с потерей устойчивости это когда ты включаешь микрофон и тычешь им в динамик, обычно сразу же раздается противный вой или свист – это и есть генерация. Нам же надо уменьшить коэффициент усиления нашего операционника до разумных пределов, поэтому мы применим отрицательную связь и заведем сигнал с выхода на отрицательный вход.

Соотношение резисторов обратной связи и входа дадут нам коэффициент усиления влияющий на ширину окна регулирования. Я прикинул, что тридцати будет достаточно, ты же можешь пересчитать под свои нужды.

Пила
Осталось изготовить пилу, а точнее собрать генератор пилообразного напряжения. Состоять он будет из двух операционников. Первый за счет положительной обратной связи оказывается в генераторном режиме, выдавая прямоугольные импульсы, а второй служит интегратором, превращая эти прямоугольники в пилообразную форму.

Конденсатор в обратной связи второго операционного усилителя определяет частоту импульсов. Чем меньше емкость конденсатора, тем выше частота и наоборот. Вообще в ШИМ генерации чем больше тем лучше. Но есть один косяк, если частота попадет в слышимый диапазон (20 до 20 000 гц) то двигатель будет противно пищать на частоте ШИМ , что явно расходится с нашей концепцией бесшумного компьютера.

А из добиться из данной схемы частоты больше чем пятнадцать килогерц мне не удалось – звучало отвратительно. Пришлось пойти в другую сторону и загнать частоту в нижний диапазон, в район двадцати герц. Движок начал чуток вибрировать, но это не слышно и ощущается только пальцами.

Такс, с блоками разобрались, пора бы и на схемку поглядеть. Думаю большинство уже догадались что тут к чему. А я все равно поясню, для большей ясности. Пунктиром на схеме обозначены функциональные блоки.

Блок #1
Это генератор пилы. Резисторы R1 и R2 образуют делитель напряжения, чтобы подать в генератор половину питающего, в принципе они могут быть любого номинала, главное, чтобы были одинаковыми и не сильно большого сопротивления, в пределах сотни килоом. Резистор R3 на пару с конденсатором С1 определяют частоту, чем меньше их номиналы тем больше частота, но опять повторюсь, что мне не удалось вывести схему за звуковой диапазон, поэтому лучше оставь как есть. R4 и R5 это резисторы положительной обратной связи. Также они влияют на высоту пилы относительно нуля. В данном случае параметры оптимальные, но если не найдешь таких же то можно брать примерно плюс минус килоом. Главное соблюдать пропорцию между их сопротивлениями примерно 1:2. Если сильно снизить R4 то придется снизить и R5.

Блок #2
Это блок сравнения, тут происходит формирование ШИМ импульсов из пилы и постоянного напряжения.

Блок #3
Это как раз схема устраивающая вычисление температуры. Напряжение с термодатчика VD1 подается на положительный вход, а на отрицательный вход подается напряжение смещения с делителя на R7 . Вращая ручку подстроечного резистора R7 можно сдвигать окно регулирования выше или ниже по температурной шкале.

Резистор R8 может быть в пределах 5-10кОм больше нежелательно, меньше тоже – может сгореть термодатчик. Резисторы R10 и R11 должны быть равны между собой. Резисторы R9 и R12 также должны быть равны между собой. Номинал резисторов R9 и R10 может быть в принципе любым, но надо учитывать, что от их отношения зависит коэффициент усиления определяющий ширину окна регулирования. Ku = R9/R10 исходя из этого соотношения можно выбирать номиналы, главное, чтобы он был не меньше килоома. Оптимальным, на мой взгляд, является коэффициент равный 30, что обеспечивается резисторами на 1кОм и 30кОм.

Монтаж

Девайс выполнен печатным монтажом, чтобы быть как можно компактней и аккуратней. Рисунок печатной платы в виде Layout файла выложен . Сама же печатная плата выполняется на раз-два посредством .

Когда все детали будут в сборе, а плата вытравлена, то можно приступать к сборке. О том как надо правильно паять , поэтому повторяться не буду. Резисторы и конденсаторы можешь припаивать без опаски, т.к. они почти не боятся перегрева. Особую осторожность следует проявить с MOSFET транзистором.

Дело в том, что он боится статического электричества. Поэтому прежде чем его доставать из фольги, в которую тебе его должны завернуть в магазине, рекомендую снять с себя синтетическую одежду и коснуться рукой оголенной батареи или крана на кухне. Микруху можно перегреть, поэтому когда будешь паять ее, то не держи паяльник на ножках дольше пары секунд. Ну и еще, напоследок, дам совет по резисторам, а точнее по их маркировке. Видишь цифры на его спинке? Так вот это сопротивление в омах, а последняя цифра обозначает число нулей после. Например 103 это 10 и 000 то есть 10 000 Ом или 10кОм.

Апгрейд дело тонкое.
Если, например, захочешь добавить второй датчик для контроля другого вентилятора, то совершенно не обязательно городить второй генератор, достаточно добавить второй компаратор и схему вычисления, а пилу подать из одного и того же источника. Для этого, конечно, придется перерисовать рисунок печатной платы, но я не думаю, что для тебя это составит большого труда.

Итог:
Сижу, печатаю эту статью, проц не загружен. Системник, стоящий у меня почти под ухом, лениво шуршит вентиляторами в пол силы. За окном прохладно, приоткрыл форточку – компьютер вообще затаился. Автоматика, блин. Благодать! Думаю тишина стоит того, чтобы ради нее посидеть вечерок с паяльником, как считаешь? Удачи, коллега!

17. 07.2018

Блог Дмитрия Вассиярова.

Реобас – залог тихой работы компьютера

Приветствую дорогих читателей моего сайта. Я готов вас порадовать рассказом об одном очень полезном устройстве. Оно сможет обеспечить вас дополнительным комфортом в процессе работы на персональном компьютере. Такую возможность предоставляет реобас, или говоря более понятным языком контроллер-регулятор работы вентиляторов системного блока.

Скажу честно, в сети я не нашел точного объяснения термину «реобас». Но у меня есть предположение, что это как-то связано с «реостатом». Это такой прибор, регулирующий напряжение за счет изменения сопротивления. Что-то общее между ними все-таки есть.

Но есть еще версия:

«Rheobase» это биологический термин, означающий минимальный ток при котором сокращается мышца.

И это объяснение близко по смыслу, поскольку и нам нужно так уменьшить ток, подаваемый на кулер, чтобы тот еще мог вращаться.

Последствия наращивания мощности

Но перейдем к делу, для чего все-таки нужен этот реобас? Я думаю ни для кого не секрет, что имеет место тенденция к постоянному росту мощностей персональных компьютеров. Увеличивается производительность процессора и видеокарты, расширяется объем основной и оперативной памяти.

Усугубляют ситуацию новые компьютерные игры с 4K разрешением. А так же ресурсоемкие программы для видеомонтажа и создания 3D анимации. Ради их стабильной работы без подтормаживаний владельцы ПК вынуждены делать кардинальный апгрейд своих машин, зачастую сопровождающийся разгоном процессора. Как вы понимаете, все это порождает цепочку взаимосвязанных процессов:

  • Содержимое системника потребляет намного больше энергии;
  • Затраченные киловатты трансформируются в тепло, выделяемое микросхемами и другими деталями;
  • Для исключения перегрева устанавливаются дополнительные и более мощные вентиляторы, общее количество которых в корпусе ПК может достигать 8-10 штук;
  • Какими бы тихоходными современные кулеры не были, их совместная работа «в оркестре» создает не только мощный поток воздуха, но и достаточно громкий и весьма неприятный шумовой фон. Который, в некоторых случаях, может вызывать головные боли.

Я думаю, конечная проблема обрисована ярко. И многие из вас уже наверняка задумывались о том, как сделать вентиляционное охлаждение более тихим. Тем более, что такая теоретическая возможность существует: компьютер ведь не всегда работает на своей максимальной мощности.

Вот это правильно, и умные люди об этом тоже уже подумали и создали устройство реобас. Оно отлично справляется с регулировкой оборотов кулеров в зависимости от загруженности системы.

Какие бывают реобасы?

Принцип работы контроллера вентиляторов прост и понятен каждому: регулировка скорости вращения за счет изменения параметров тока, подаваемого на электродвигатель кулера. Вроде бы все ясно. Но на деле реобасы отличаются конструкцией и техническими решениями, позволяющими по-разному реализовать основную функцию.

Давайте посмотрим, из чего состоит простой ручной реобас. Во-первых, это кабель для соединения с блоком питания и отдельные провода (контролеры) подключаемые для питания и контроля вентиляторов или их групп. Наибольшее распространение получили четырёхканальные приборы. В них выделяют три основных линии на БП, процессор, видеокарту и один, на усмотрение пользователя.

На каждом канале устанавливается регулятор, поворотом которого вручную можно установить нужную частоту вращения лопастей. Контролируется этот процесс небольшим ЖК дисплеем, располагаемым вместе с ручками регулировки на панели. Девайс устанавливается в 5,25 дюймовый отсек на фронтальной части системного блока. Главным в такой схеме является программируемы чип со специальной программным управлением.

Но, как вы понимаете, от ручной регулировки толку немного. А в случае с охлаждением процессора такой способ может и навредить. Поэтому я сразу предлагаю рассмотреть конструкцию реобаса, который способен с максимальной эффективностью управлять шумом и энергопотреблением вентиляторов в полностью автоматическом режиме. Главные ее отличия – это наличие отдельных термодатчиков на каждый канал и более сложный алгоритм работы.

Как работает авторегулирование?

После включения компа такая система сначала раскручивает кулеры по максимуму, фиксирует эти значения частоты вращения и принимает их за 100%. Далее обороты по каждому каналу искусственно снижаются. И уже потом автоматически регулируются в зависимости от загруженности и нагрева отдельных модулей.

При этом пользователь компа может и самостоятельно устанавливать и регулировать обороты вращения для отдельных вентиляторов. Для более удобной работы с реобасом на их панели устанавливается информативный дисплей, который в некоторых случаях делается сенсорным и цветным. С его помощью можно в удобном виде получать текущие сведения:

  • какова частота вращения кулеров;
  • температура в зоне их размещения;
  • потребляемая мощность подключенных кулеров;

Так же на дисплей выводится информация о неисправностях. В некоторых моделях реобасов имеется возможность работать со специальным ПО, которая упрощает процесс управления вентиляторами.

Технология регулирования оборотов

Кстати, о регулировке частоты оборотов. Не все двигатели способны изменять ее вследствие уменьшения или увеличения напряжения. Да и сама эта технология несовершенна, ведь при минимальных значениях U, созданного вращающего момента может оказаться недостаточно, чтобы провернуть вентилятор с грязными лопастями или с загустевшей смазкой.

Поэтому в хороших реобасах с автоматической регулировкой используют широтно-импульсную модуляцию тока.

При этом напряжение остается постоянным – 12 В. Но подается оно на вентилятор с паузами и разной периодичностью.

Это отлично видно на рисунке:

Такая схема питания более сложна в реализации и выполняется с помощью оцифровки сигнала. Поэтому иногда можно встретить 128 уровней настройки частоты вращения. Но зато она позволяет устанавливать не только точные, но и самые минимальные значения, да хоть 1 оборот в минуту.

Определить, поддерживается ли она в реобасе, можно по разъемам для подключения вентиляторов. Если они 2-3-х пиновые – это не то. А вот 4-х проводов как раз достаточно, чтобы подать напряжение, мониторить обороты и управлять ими. Не забывайте и о том, что в автоматических приборах в наличии должны еще быть и кабели с датчиками для мониторинга температур.

Эпилог

И еще небольшой бонус. В дорогих автоматических моделях с большим цветным сенсорным экраном на всю ширину блока ничего «лишнего» вы не найдете. А вот в некоторых простых реобасах с ручками и кнопочками на панели остается немного места. И производители стараются добавить функционала, разместив на ней еще USB порты, SD гнезда или другие приятные плюшки в виде подсветки.

Теперь вы знаете, что такое реобас. И как с его помощью можно заставить компьютер вести себя потише. На этом мой обзор хитрого и полезного устройства окончен.

Всем добра и до новых встреч на страницах моего сайта.

Реобас (контроллер) — это регулятор оборотов вентиляторов для компьютера. Некоторые корпуса уже имеют встроенный реобас, например Zalman Z9 Plus с регулятором рассчитанным на подключение двух корпусных вентиляторов. Как правило, реобас приходится покупать отдельно и необходимо определиться с выбором подходящего девайса. Первоначально следует прикинуть, сколько вентилятором будет подключено к регулятору. В данной статье рассматриваются контроллеры предназначенные для управления от 4 до 6 вентиляторами. Все рассматриваемые реобасы можно купить на сайте aliexpress.com.

Alseye a-100l (6 вентиляторов)

Контроллер для шести вентиляторов с жидкокристаллическим дисплеем.

Alseye a-100l (r) с красно-белым дисплеем (для черного корпуса)

Alseye a-100l (b) с сине-белым дисплеем (для черного корпуса)

Обзор реобаса Alseye a-100l смотрите в видео.

AeroCool Touch-2100 (5 вентиляторов)

Данный реобас дополнительно имеет два порта USB 3.0 и разъемы для подключения наушников и микрофона.

Обзор устройства смотрите в видео.

NI5L (5 вентиляторов)

Данный реобас оснащен цветным жидкокристаллическим дисплеем и рассчитан на подключение пяти вентиляторов суммарной мощностью до 10 Вт. Предназначен для установки в пятидюймовый отсек.

Начинка NI5L

STW 5043 (4 вентилятора)

Контроллер STW 5043 интересен тем, что на экране одновременно отображаются обороты всех четырех вентиляторов.

Не секрет, что высокопроизводительные микропроцессорные устройства греются при работе: чем больше нагрузка – тем сильнее. Для многих элементов современного компьютера установки на «чип» обычного радиатора уже недостаточно – требуется активный отвод тепла. Проще всего это реализовать с помощью вентилятора (кулера): уже никого не удивляют системные блоки с суммарным числом кулеров в 8-10 шт. Иногда на материнской плате не хватает разъемов для подключения дополнительных вентиляторов, и подключение производится через разветвитель питания или реобас.

Одиночный кулер шумит несильно и электроэнергии потребляет мало. Но если в корпусе их с десяток, шум становится уже некомфортным, да и потребление электроэнергии возрастает до вполне заметных значений.

Чаще всего необходимость изменения скорости вращения вентиляторов связана как раз с избыточной шумностью системного блока. Если эффективность охлаждения системного блока достаточно высока и перегрева каких-либо элементов компьютера не возникает даже при самых высоких нагрузках, можно попробовать снизить скорость вращения некоторых вентиляторов.


Одним из способов такого снижения является использование реобаса – многоканального регулятора скорости вращения вентиляторов.

Но этот способ – не единственный. Большинство современных материнских плат способно регулировать скорость вращения подключенных вентиляторов. Во многих случаях даже не понадобится установки какого-либо программного обеспечения – необходимая функция встроена в BIOS.


Для входа в BIOS необходимо при загрузке компьютера нажать определенную клавишу (или сочетание клавиш), чаще всего – Delete. Если по нажатию Delete при загрузке компьютера ничего не происходит, следует посмотреть на нижние строчки экрана при загрузке – там при начале загрузки обычно выводится подсказка, какие именно клавиши следует нажимать для входа в BIOS.
В BIOS следует найти страницу с настройками работы вентиляторов (Fan Speed, Fan Control, Fan Profile и т.п.) Настройки CPU Fan относятся к кулеру процессора, Chassis Fan – к кулеру (или кулерам) корпуса. Настройки кулера процессора следует менять только если вы точно знаете, что делаете и уверены в правильности своих действий – перегрев процессора может привести к выходу его из строя. Настройки кулера корпуса не столь критичны, но бездумно их менять тоже не стоит; будет нелишним перед изменением записать все старые значения.

Для регулировки скорости вращения в первую очередь следует убедиться, что эта функция включена: параметр Q-Fan Control (или Fan Speed Control) должен иметь значение Enabled. При этом становятся доступны параметры тонкой настройки вентилятора – в некоторых BIOS их много, в других меньше. Чаще всего самым простым способом снижения шума (или, наоборот, улучшения охлаждения) является смена профиля (Q-Fan Profile). Для снижения шума следует установить его в Silent, для увеличения охлаждения – в Performance или Turbo.

После сохранения настроек и перезапуска системы следует убедиться, что настроенный кулер крутится и что не происходит перегрева системы, в обратном случае следует вернуть старые настройки BIOS.


Если нужные настройки в BIOS не нашлись, не стоит расстраиваться – чаще всего подключенными к материнской плате вентиляторами можно управлять и с помощью специализированного ПО. Самая популярная из таких программ (и при этом абсолютно бесплатная) – это speed fan. При запуске программы в первой же вкладке будут отображены все найденные вентиляторы, их скорости вращения и температуры элементов компьютера – на них следует ориентироваться при настройке кулеров. Рекомендации по настройке те же – следует с осторожностью оперировать настройками CPU Fan (кулер процессора) и GPU Fan (кулер видеокарты). При изменении скоростей (от 0 до 100%) следует отслеживать воздействие этих изменений на температуру. В программе также можно задать критические температуры для всех элементов и, указав, какой кулер за какую температуру отвечает, запустить режим автоматического регулирования скорости вентиляторов.

Если же ни speed fan, ни другие аналогичные программы «не увидели» вентиляторов, или если вентиляторы вообще подключены не к материнской плате – тогда для настройки их скорости вращения потребуется реобас.


Перед рассмотрением характеристик реобасов следует упомянуть об еще одной, очень частой причине повышенной шумности вентиляторов – забивание кулеров пылью и/или загустевание в них смазки. Если вам кажется, что раньше компьютер шумел меньше, возможно, никаких программ и устройств для снижения шума не потребуется – достаточно будет почистить кулер от пыли и (при необходимости) обновить смазку.

Характеристики регуляторов скорости вращения вентиляторов.

Тип реобаса.


Основная задача разветвителя питания – обеспечить питанием дополнительные вентиляторы, для которых не нашлось разъемов на материнской плате. Разветвитель может и вообще не иметь функции управления скоростью вращения вентиляторов. Если такая функция и есть, то реализована она будет программно.


Регулятор оборотов (реобас) – обладает большей, по сравнению с разветвителем, функциональностью. Кроме подключения дополнительных вентиляторов, реобас предоставляет и некоторые дополнительные возможности, среди которых могут быть:
- контроль и отображение скорости вращения каждого подключенного вентилятора;
- контроль температуры от собственного термодатчика (или нескольких термодатчиков);
- автоматическая или ручная регулировка скоростей вращения вентиляторов;
- контроль и отображение мощности, потребляемой подключенными вентиляторами

Тип управления скоростью вращения может быть ручным или автоматическим.

При ручном управлении скорость вращения задается оператором вручную – с помощью кнопок, ручки регулятора или на сенсорном экране. Несмотря на простоту такого способа управления, удобным он будет только в тех случаях, когда не требуется менять скорость вращения вентиляторов во время работы компьютера. Для подстройки скорости вращения корпусных вентиляторов такой способ еще сгодится, а для управления скоростью вращения кулера процессора – уже нет.

Автоматический тип управления, предусматривающий автоматическое изменение скорости вращения кулера в зависимости от показаний термодатчика, намного удобнее в эксплуатации и обеспечивает лучшие условия работы оборудования. Для управления кулерами элементов, сильно меняющих температуру в зависимости от нагрузки, следует использовать реобасы с автоматическим типом управления.
Количество подключаемых вентиляторов определяет, какое максимальное количество вентиляторов можно подключить к реобасу. Следует иметь в виду, что с ростом количества подключенных вентиляторов, растет и потребляемая устройством мощность; у блока питания компьютера должен быть достаточный запас мощности.


Наличие дисплея с возможностью вывода на него значений температур и скоростей вращения вентиляторов в некоторых случаях может оказаться нелишним. Дисплей может предупредить о приближающемся перегреве или неисправности вентилятора и предотвратить сбой или потерю данных. Для серверов (часто не имеющих своего монитора) такой дисплей будет особенно полезен.


Контроль температуры осуществляется по термодатчикам материнской платы либо по собственным термодатчикам реобаса. В последнем случае следует также выяснить количество каналов измерения температуры (проще говоря, количество термодатчиков). У многих реобасов контроль температуры производится по одному термодатчику. Если к такому реобасу предполагается подключение и кулеров процессора/видеокарты, это может привести к проблемам (если установить датчик у процессора, он может «не заметить» перегрева видеокарты и наоборот). Реобасы с несколькими термодатчиками стоят дороже, но в случаях, аналогичных вышеприведенному, на этом экономить не стоит.


Разъемы для подключения вентиляторов могут быть 2-pin 3-pin и 4-pin.
2-pin и 3-pin разъемы предполагают управление скоростью вращения вентилятора с помощью изменения его напряжения питания. Этот наиболее простой способ, поэтому реализующие его реобасы и вентиляторы недороги. Недостатками этого способа является невысокая точность задания частоты вращения и снижение крутящего момента со снижением напряжения. Вентиляторы с 3-pin разъемом вообще не могут крутиться медленнее некоторого порогового значения – крутящий момент становится настолько мал, что его не хватает для проворота крыльчатки. Для корпусных вентиляторов и вентиляторов жестких дисков такие вентиляторы подойдут, но на процессоры уже давно принято ставить вентиляторы, подключаемые 4-pin разъемом.
4-pin разъемы предполагают управление скоростью вращения вентилятора с помощью широтно-импульсной модуляции (ШИМ). При этом питание на вентилятор подается полное - 12 вольт – но не постоянно, а импульсами, меняя продолжительность которых, можно очень точно задавать частоту вращения вентилятора. Кроме того, при таком способе нет ограничения на минимальную скорость вращения – регулируемый таким способом вентилятор может вращаться даже со скоростью 1 об/мин. Единственный недостаток такого способа – он сложнее в реализации, а следовательно, дороже.

Разъем питания реобаса может быть 3-pin (в этом случае регулятор скорости подключается к одному из свободных 3-pin разъемов материнской платы) 4-pin Molex (питание берется с одного из разъемов блока питания) и SATA (питание берется с разъема SATA материнской платы).

Что такое реобас? Реобас – это «климат-контроль» для вашего системника. Навороченные реобасы снабжены дисплеями и показывают скорости вращения вентиляторов, температуру охлаждаемых элементов и т.д. и т.п.. В результате температура внутренних элементов вашего компьютера держится на одном уровне. Но иногда этого совсем не нужно. И вовсе не потому что подобные реобасы стоят от тысячи рублей и выше. Просто функционал должен быть по потребностям. А потребности мои такие – 4-х канальный регулятор оборотов вентиляторов с подсветкой.

Разделим реобасы на два класса с контролем температуры (тот самый «климат-контроль») и без него (регулятор оборотов ). Мне нужен был последний. За основу была взята схема регулятора напряжения: На схеме имеется один канал. Остальные абсолютно идентичны. Начнем с обозначений: XT1 – стандартный молекс-разъем. Можно спаять с дохлого харда или привода. XT2 – 3-х контактный разъем, к которому подключается кулер . R1 — ориентировочно 50-100 Ом – на случай если переменный резистор выкручен на нуль. Определяет максимально возможную скорость вращения. R2- 5-10кОм , в зависимости от транзистора. R3- ~10кОм — для невозможности остановки вентилятора при ручке переменника на максимуме.. Подбирается опытным путем. От этого резистора зависит безопасность вашей системы от перегрева. VT1 – любой p-n-p транзистор необходимой мощности. В случае установки на КТ837 радиаторов можно подсоединять любую нагрузку потребляемой мощностью до 30Вт. Схему можно спаять либо на печатной плате, предварительно ее вытравив, либо навесным монтажом. Последний показал свою надежность при должном его оформлении в термоусадку – трудится до сих пор без перебоев. В качестве светодиодов пойдут любые сверхяркие . Ограничивающий резистор считается по закону Ома исходя из необходимого тока. Я повесил 5 синих светодиодов на +5В.

В результате получился вполне неплохой агрегатик: На системнике реобас закрепляется при помощи стандартной железной заглушки. Хоть она и «выламываемая», имеется возможность ее установки на винты, что собственно я и сделал. В пластиковой заглушке были просверлены отверстия необходимого диаметра и обработаны надфилем.
Как мне кажется, вышло весьма неплохо!



Прежде чем устанавливать все на место, запустите всю систему до уровня BIOSа и настройте минимально возможную скорость вращения вентиляторов. Она делается так, чтобы при выворачивании ручки резистора на максимальное сопротивление вентилятор продолжал УВЕРЕННО вращаться.

В заключение дам маленький совет – максимально утишилять компьютер следует только в случае крайне необходимости (например в ночь). Я не рекомендую оставлять минимально охлаждающийся компьютер без присмотра . После сна рекомендую «прибавить газу» — я, например, при уходе всегда врубаю вентиляторы на полную катушку.